
A

Major Project On

Automated Engagement Recognition in

E-Environments

(Submitted in partial fulfillment of the requirements for the award of Degree)

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

By

S. Uday Sai (187R1A0552)

Ankita Mishra (187R1A0509)

Under the Guidance of

J. NARASIMHARAO

(Associate Professor)

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

(Accredited by NAAC, NBA, Permanently Affiliated to JNTUH, Approved by AICTE, New Delhi)

Recognized Under Section 2(f) & 12(B) of the UGCAct.1956,

Kandlakoya (V), Medchal Road, Hyderabad-501401.

2018-22

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

This is to certify that the project entitled “AUTOMATED ENGAGEMENT

RECOGNITION IN E-ENVIRONMENTS” being submitted by S. UDAY SAI

(187R1A0552) and ANKITA MISHRA (187R1A0509) in partial fulfillment of the

requirements for the award of the degree of B. Tech in Computer Science and Engineering to the

Jawaharlal Nehru Technological University Hyderabad, is a record of bonafide work carried out by

them under our guidance and supervision during the year 2021-22.

The results embodied in this thesis have not been submitted to any other University

or Institute for the award of any degree or diploma.

Mr. J. Narasimharao Dr. A. RajiReddy

Associate Professor DIRECTOR

INTERNAL GUIDE

Dr. K. Srujan Raju EXTERNAL EXAMINER

HoD

Submitted for viva voice Examination held on

ACKNOWLEDGEMENT

Apart from the efforts of us, the success of any project depends largely on

the encouragement and guidelines of many others. We take this opportunity to express our

gratitude to the people who have been instrumental in the successful completion of this

project.

We take this opportunity to express my profound gratitude and deep regard to

my guide Mr. J. Narasimharao, Associate Professor, for his exemplary guidance,

monitoring and constant encouragement throughout the project work. The blessing, help

and guidance given by him shall carry us a long way in the journey of life on which we are

about to embark. We also take this opportunity to express a deep sense of gratitude to the

Project Review Committee (PRC) Mr. J. Narasimharao, Dr. T. S. Mastan Rao, Dr.

Suwarna Gothane, Mr. A. Uday Kiran, Mrs. G. Latha, Mr. A. Kiran Kumar for their

cordial support, valuable information, and guidance, which helped us in completing this

task through various stages.

We are also thankful to Dr. K. Srujan Raju, Head, Department of Computer

Science and Engineering for providing encouragement and support for completing this

project successfully.

We are obliged to Dr. A. Raji Reddy, Director for being cooperative throughout the

course of this project. We also express our sincere gratitude to Sri. Ch. Gopal Reddy,

Chairman for providing excellent infrastructure and a nice atmosphere throughout the

course of this project.

The guidance and support received from all the members of CMR Technical

Campus who contributed to the completion of the project. We are grateful for their

constant support and help.

Finally, we would like to take this opportunity to thank our family for their constant

encouragement, without which this assignment would not be completed. We sincerely

acknowledge and thank all those who gave support directly and indirectly in the completion

of this project.

ANKITA MISHRA (187R1A0509)

S. UDAY SAI (187R1A0552)

ABSTRACT

The gap between the actual and virtual worlds is closing at an incredible rate. Inter-

action with computers is becoming increasingly common as more people utilize them to

complete a variety of jobs ranging from online learning to shopping. In such circumstances,

identifying a user's level of involvement with the system with which he or she is engaging

can modify how the system responds to the user. This will result in more engagement with

the system as well as improved human-computer connection. In today's vision applications,

including advertising, healthcare, autonomous vehicles, and e-learning, identifying user en-

gagement might be critical. An automated engagement detection system that can analyze a

person’s engagement outcome with a certain object or an environment can be crucial to

many organizations and businesses around the globe. Therefore, we employ cutting-edge al-

gorithms in our project to recognize user engagement levels and divide them into two cate-

gories: positive and negative.

ii

LIST OF FIGURES/TABLES

FIGURE NO FIGURE NAME PAGE NO

Figure 3.1 Project Architecture of

Automated Engagement

Recognition in E-

environments

9

Figure 3.2 Use case diagram of

Automated Engagement

Recognition in E-

environments

10

Figure 3.3 Class diagram of

Automated Engagement

Recognition in E-

environments

 11

Figure 3.4 Sequence diagram of

Automated Engagement

Recognition in E-

environments

12

Figure 3.5 Activity diagram of
Automated Engagement
Recognition in E-
environments

13

iii

LIST OF SCREENSHOTS

SCREENSHOT

NO.

SCREENSHOT NAME PAGE

NO.

Screenshot 5.1 ENGAGEMENT ANALYSIS 25

Screenshot 5.2

ENGAGEMENT LEVEL

INCREASING FROM LEFT TO

RIGHT

25

Screenshot 5.3

VARIETY IN DATASET

25

Automated Engagement Recognition in E-Environments

TABLE OF CONTENTS

ABSTRACT i

LIST OF FIGURES ii

LIST OF SCREENSHOTS iii

1. INTRODUCTION 1

 1.1 PROJECT SCOPE 1

 1.2 PROJECT PURPOSE 1

 1.3 PROJECT FEATURES 1

2. SYSTEM ANALYSIS 3

 2.1 PROBLEM DEFINITION 3

 2.2 EXISTING SYSTEM 3

 2.2.1
LIMITATIONS OF THE

EXISTING SYSTEM
3

 2.3 PROPOSED SYSTEM 4

 2.3.1
ADVANTAGES OF

PROPOSED SYSTEM
4

 2.4 FEASIBILITY STUDY 4

 2.4.1
ECONOMIC

FEASIBILITY
5

 2.4.2
TECHNICAL

FEASIBILITY
5

 2.4.3
BEHAVIORAL

FEASIBILITY
5

 2.5 HARDWARE & SOFTWARE REQUIREMENTS 6

 2.5.1
HARDWARE

REQUIREMENTS
6

 2.5.2
SOFTWARE

REQUIREMENTS
6

3. ARCHITECTURE 7

 3.1 PROJECT ARCHITECTURE 7

 3.2 DESCRIPTION 7

 3.3 USECASE DIAGRAM 8

 3.4 CLASS DIAGRAM 9

Automated Engagement Recognition in E-Environments

 3.5 SEQUENCE DIAGRAM 10

 3.6 ACTIVITY DIAGRAM 11

4. IMPLEMENTATION 12

 4.1 SAMPLE CODE 12

5. SCREENSHOTS 21

6. TESTING 23

 6.1 INTRODUCTION TO TESTING 23

 6.2 TYPES OF TESTING 23

 6.2.1 UNIT TESTING 23

 6.2.2
INTEGRATION

TESTING
23

 6.2.3
FUNCTIONAL

TESTING
24

 6.3 TEST CASES 24

 6.3.1
UPLOADING

IMAGES
24

 6.3.2 CLASSIFICATION 25

7. CONCLUSION & FUTURE SCOPE 26

 7.1 PROJECT CONCLUSION 26

 7.2 FUTURE SCOPE 36

8. BIBLIOGRAPHY 27

 8.1 REFERENCES 27

Automated Engagement Recognition in E-Environments

Automated Engagement Recognition in E-Environments

1. INTRODUCTION

Automated Engagement Recognition in E-Environments

1

1. INTRODUCTION

1.1 PROJECT SCOPE

This project is titled “AUTOMATED ENGAGEMENT RECOGNITION IN

E-ENVIRONMENTS”. An automated engagement detection system that can analyze

a person’s engagement outcome with a certain object or an environment in an E-

Environment. We built a computer vision model that takes input from a video,

recognizes human emotions from face expressions and body behavior and categorizes

them into either positive or negative. This can be further developed to track and

detect in real time and send the information to the backend for further use cases.

1.2 PROJECT PURPOSE

The gap between the actual and virtual worlds is closing at an incredible rate.

Interaction with computers is becoming increasingly common as more people utilize

them to complete a variety of jobs ranging from online learning to shopping. In such

circumstances, identifying a user's level of involvement with the system with which

he or she is engaging can modify how the system responds to the user. This will

result in more engagement with the system as well as improved human-computer

connection. In today's vision applications, including advertising, healthcare,

autonomous vehicles, and e-learning, identifying user engagement might be critical.

We automate engagement level recognition for E-Environments using advanced

computer vision techniques such as Slow Fast networks.

1.3 PROJECT FEATURES

The main feature of this project is that the system will be capable of

identifying the different states of emotions a user goes through in a E-setting and

analyze it and categorize whether the response is either positive or negative without

Automated Engagement Recognition in E-Environments

2

any human intervention.

Automated Engagement Recognition in E-Environments

 2. SYSTEM ANALYSIS

Automated Engagement Recognition in E-Environments

3

2.SYSTEM ANALYSIS

2. SYSTEM ANALYSIS

System Analysis is the important phase in the system development process.

The System is studied to the minute details and analyzed. The system analyst plays

an important role of an interrogator and dwells deep into the working of the present

system. In analysis, a detailed study of these operations performed by the system and

their relationships within and outside the system is done. A key question considered

here is, “what must be done to solve the problem?” The system is viewed as a whole

and the inputs to the system are identified. Once analysis is completed the analyst has

a firm understanding of what is to be done.

2.1 PROBLEM DEFINITION

The gap between the actual and virtual worlds is closing at an incredible rate.

Interaction with computers is becoming increasingly common as more people utilize

them to complete a variety of jobs ranging from online learning to shopping. In such

circumstances, identifying a user's level of involvement with the system with which

he or she is engaging can modify how the system responds to the user. This will

result in more engagement with the system as well as improved human-computer

connection. In today's vision applications, including advertising, healthcare,

autonomous vehicles, and e-learning, identifying user engagement might be critical.

An automated engagement detection system that can analyze a person’s engagement

outcome with a certain object or an environment can be crucial to many organizations

and businesses around the globe.

2.2 EXISTING SYSTEM

1. Surveys:

 User Engagement can be measured by conducting surveys where users will fill in

a survey form to give information regarding their engagement levels.

2. Manual study from videos:

Automated Engagement Recognition in E-Environments

4

 User Engagement is measured by a person by going through multiple videos and

identifying the affective states of person.

2.2.1 LIMITATIONS OF THE EXISTING SYSTEM

1. Inaccurate

2. Less credible

3. Herculean task for a human to do all the analyzing

4. Practically impossible for vast amounts of data

2.3 PROPOSED SYSTEM

An automated engagement detection system that can analyze a person’s

engagement outcome with a certain object or an environment can be crucial to many

organizations and businesses around the globe. Therefore, we employ cutting-edge

algorithms in our project to recognize user engagement levels and divide them into

two categories: positive and negative.

2.3.1 ADVANTAGES OF THE PROPOSED SYSTEM

The system is very simple in design and to implement. The system requires

very low system resources, and the system will work in almost all configurations.

1. It is inexpensive in terms of effort and labor.

2. It is highly scalable.

3. Practically efficient and implementable

2.4 FEASIBILITY STUDY

A feasibility study is an analysis that considers all a project's relevant

factors— including economic, technical, and social considerations—to ascertain the

likelihood of completing the project successfully. Three key considerations involved

in the feasibility analysis are

• Economic Feasibility

• Technical Feasibility

• Social Feasibility

2.4.1 ECONOMIC FEASIBILITY

Automated Engagement Recognition in E-Environments

5

Economic feasibility is a kind of cost-benefit analysis of the examined project,

which assesses whether it is possible to implement it. This term means the assessment

and analysis of a project's potential to support the decision-making process by

objectively and rationally identifying its strengths, weaknesses, opportunities, and

risks associated with it, the resources that will be needed to implement the project,

and an assessment of its chances of success.

• The costs conduct a full system investigation.

• The cost of the hardware and software.

• The benefits in the form of reduced costs or fewer costly errors.

Since the system is developed as part of project work, there is no manual cost to

spend for the proposed system. Also, all the resources are already available, it gives

an indication of the system is economically possible for development.

2.4.2 TECHNICAL FEASIBILITY

Technical feasibility is a set of techniques aimed at forecasting future prices of

securities, currencies or raw materials based on the analysis of price formation in the

past. Any system developed must not have a high demand on the available technical

resources. The developed system must have a modest requirement, as only minimal

or null changes are required for implementing this system.

2.4.3 BEHAVIORAL FEASIBILITY

This includes the following questions:

• Is there sufficient support for the users?

• Will the proposed system cause harm?

The project would be beneficial because it satisfies the objectives when

developed and installed. All behavioral aspects are considered carefully and conclude

that the project is behaviorally feasible.

Automated Engagement Recognition in E-Environments

6

2.5 HARDWARE & SOFTWARE REQUIREMENTS

2.5.1 HARDWARE REQUIREMENTS:

Hardware interfaces specify the logical characteristics of each interface

between the software product and the hardware components of the system. The

following are some hardware requirements.

• System: 2vCPU @ 2.2GHz

• Hard Disk: 50 GB

• Input Devices: Keyboard, Mouse

• Ram: 8 GB

2.5.2 SOFTWARE REQUIREMENTS:

Software Requirements specifies the logical characteristics of each interface and

software components of the system. The following are some software requirements,

 Operating system: Windows 8,10

 Coding Language: Python

 Tool: Google Colaboratory

Automated Engagement Recognition in E-Environments

3. ARCHITECTURE

Automated Engagement Recognition in E-Environments

7

3. ARCHITECTURE

3.1 PROJECT ARCHITECTURE

This project architecture shows the procedure followed for anomaly

detection using machine learning, starting from input to final prediction.

Figure 3.1: Project Architecture of Automated Engagement Recognition in E-environments

3.2 DESCRIPTION

Input Data: Input data is generally in video format where the data is read and

described using graphs.

Reading Data: Pandas library is used to read the data from csv files.

Describing Data: In this following step we are going to describe the data in video

file to know the number of rows and columns in the dataset.

Data Cleaning: It is a very important step while we are dealing with the large

datasets. To achieve the efficiency in computation we are going to remove not related

to crime videos.

Training and test data: Training data is passed to train the model. Test data is used to

test the trained model whether it is making correct predictions or not.

Automated Engagement Recognition in E-Environments

8

3.3 USE CASE DIAGRAM

In the use case diagram we have basically two actors who are the user and the

admin. The user initiates the system to get the results. Whereas the admin login to the

system , The Camera processes the images and the videos and installs it into the

system which is then accessed by the admin and the system evaluates the user

engagement and after all the analysis it gives the results.

Figure 3.2: Use Case Diagram of Automated Engagement Recognition in E-environments

Automated Engagement Recognition in E-Environments

9

 3.4 CLASS DIAGRAM

Class Diagram is a collection of classes and objects.

Figure 3.3: Class Diagram of Automated Engagement Recognition in E-environments

Automated Engagement Recognition in E-Environments

10

3.5 SEQUENCE DIAGRAM

Figure 3.4: Sequence Diagram of Automated Engagement Recognition in E-environments

Automated Engagement Recognition in E-Environments

11

3.6 ACTIVITY DIAGRAM

It describes the flow of activity states.

Figure 3.5: Activity Diagram of Automated Engagement Recognition in E-environments

Automated Engagement Recognition in E-Environments

4. IMPLEMENTATION

Automated Engagement Recognition in E-Environments

12

4. IMPLEMENTATION

4.1 SAMPLE CODE

!nvidia-smi
from google.colab import drive drive._mount('/content/drive', force_remount= True)

!sudo apt-get install -y python-dev pkg-config # !sudo apt-get install -y \
libavformat-dev libavcodec-dev libavdevice-dev \
libavutil-dev libswscale-dev libswresample-dev libavfilter-dev # !pip install av

import av
import glob # import os
import time # import tqdm
import datetime # import argparse

import os
os.listdir("/content/drive/Shareddrives/Manthan Data/Videos")

import cv2
import numpy as np import os
from google.colab.patches import cv2_imshow

def dataprep(path, seq_len, res):
for c in os.listdir(path):
if not os.path.exists(os.path.join(res,c)): os.makedirs(os.path.join(res,c))
for v in os.listdir(os.path.join(path, c)):

cap = cv2.VideoCapture(os.path.join(path, c, v))

Get the frames per second
fps = cap.get(cv2.CAP_PROP_FPS)

Get the total numer of frames in the video.
frame_count = cap.get(cv2.CAP_PROP_FRAME_COUNT)

skip = frame_count // seq_len frame_num = 0

Automated Engagement Recognition in E-Environments

13

count = 0
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_num) # optional success, image = cap.read()
img1 = cv2.resize(image, (128,128)) while count < seq_len-1:
try:
frame_num += skip
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_num) # optional success, image = cap.read()
image = cv2.resize(image, (128,128)) # print(frame_num)
except:
print(os.path.join(path, c,v))
img1 = np.append(img1,image,axis = 1) count += 1
cv2.imwrite(os.path.join(res,c,v)[:-4] +".jpg",img1)
print(os.path.join(res,c,v)[:-4] +".jpg") # frame_num = frame_number cv2_imshow(img1)
def flipdataprep(path, seq_len, res):
for c in os.listdir(path):
if not os.path.exists(os.path.join(res,c)): os.makedirs(os.path.join(res,c))
for v in os.listdir(os.path.join(path, c)):
frame_num = 0 #
cap = cv2.VideoCapture(os.path.join(path, c, v))

Get the frames per second
fps = cap.get(cv2.CAP_PROP_FPS)

Get the total numer of frames in the video.
frame_count = cap.get(cv2.CAP_PROP_FRAME_COUNT)

skip = frame_count // seq_len count = 0
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_num) # optional success, image = cap.read()
img1 = cv2.resize(image, (128,128)) img1 = np.flip(img1,1)
while count < seq_len-1:
try:
frame_num += skip
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_num) # optional success, image = cap.read()
image = cv2.resize(image, (128,128)) # print(frame_num)
except:
print(os.path.join(path, c,v)) # img1 = np.flip(img1,1) image = np.flip(image,1)
img1 = np.append(img1,image,axis = 1) count += 1
cv2.imwrite(os.path.join(res,c,v)[:-4] +"flip.jpg",img1) # frame_num = frame_number
cv2_imshow(img1)

#path to videos
path = "/content/drive/Shareddrives/Manthan Data/Videos" #path to destination
res = '/content/drive/Shareddrives/Manthan Data/frames/' #number of images per video
seq_len = 16
dataprep(path, seq_len , res)
flipdataprep(path, seq_len, res) """### Training ##"""
import torchvision import torch
from torch import nn
import torch.nn.functional as F import torchvision.models as models
from torchvision.models import Model import torch.optim as optim
import copy import os

from tqdm.autonotebook import tqdm import matplotlib.pyplot as plt
from torch.utils.data import Dataset from torchvision import transforms from torch.utils.data
import DataLoader import numpy as np

Automated Engagement Recognition in E-Environments

14

from torch.utils.data.sampler import SubsetRandomSampler import cv2
import sys
from torch.optim.lr_scheduler import StepLR

sys.path.append("/content/drive/Shareddrives/Manthan Data/") from model import *
sys.path.append("/content/clr.py")

data_path = '/content/drive/MyDrive/IFrames/crime16' classes = os.listdir(data_path)
decoder = {}
for i in range(len(classes)):
decoder[classes[i]] = i encoder = {}
for i in range(len(classes)):
encoder[i] = classes[i] encoder

id = list()
path = '/content/drive/MyDrive/IFrames/crime16' for i in os.listdir(path):
p1 = os.path.join(path,i) for j in os.listdir(p1)[:500]:
p2 = os.path.join(p1,j) id.append((i,p2)) len(id)

class video_dataset(Dataset):
def init (self,frame_list,sequence_length = 16,transform = None): self.frame_list = frame_list
self.transform = transform self.sequence_length = sequence_length def len (self):

return len(self.frame_list) def getitem (self,idx):
label,path = self.frame_list[idx] img = cv2.imread(path) seq_img = list()
for i in range(16):
img1 = img[:,128*i:128*(i+1),:] if(self.transform):
img1 = self.transform(img1) seq_img.append(img1)
seq_image = torch.stack(seq_img)
seq_image = seq_image.reshape(3,16,im_size,im_size) return seq_image,decoder[label]

im_size = 128
mean = [0.4889, 0.4887, 0.4891]
std = [0.2074, 0.2074, 0.2074]

train_transforms = transforms.Compose([
transforms.ToPILImage(),transforms.RandomHorizontalFlip(),

transforms.RandomRotation(degrees=10),transforms.ToTensor(),

transforms.Resize((im_size,im_size)),])

train_data = video_dataset(id,sequence_length = 16,transform = train_transforms)

def mean_std_for_loader(loader: DataLoader):
var[X] = E[X**2] - E[X]**2
channels_sum, channels_sqrd_sum, num_batches = 0, 0, 0 for data, _ in tqdm(loader):
this_batch_size = data.size()[0]
weight = this_batch_size / len(train_data)
channels_sum += weight*torch.mean(data, dim=[0, 2, 3])
channels_sqrd_sum += weight*torch.mean(data ** 2, dim=[0, 2, 3]) num_batches +=

weight
mean = channels_sum / num_batches
std = (channels_sqrd_sum / num_batches - mean ** 2) ** 0.5
mean = [np.mean(np.array(mean)[0]),np.mean(np.array(mean)[1]),np.mean(np.array(mean)[2])]

Automated Engagement Recognition in E-Environments

15

std = [np.mean(np.array(std)[0]),np.mean(np.array(std)[1]),np.mean(np.array(std)[2])] return

mean, std
mean, std = mean_std_for_loader(train_data)

train_transforms = transforms.Compose([
transforms.ToPILImage(), transforms.RandomHorizontalFlip(),

transforms.RandomRotation(degrees=10), transforms.ToTensor(),

transforms.Resize((im_size,im_size)), transforms.Normalize(mean, std)])
train_data = video_dataset(id,sequence_length = 16,transform = train_transforms)
train_loader = DataLoader(train_data,batch_size = 8,num_workers = 4 ,shuffle = True) #

dataloaders = {'train':train_loader}
print(mean, std)

validation_split = 0.2 # shuffle_dataset = True # random_seed= 42
batch_size = 8

dataset_size = len(train_data)
indices = list(range(dataset_size))
split = int(np.floor(validation_split * dataset_size))
if shuffle_dataset : #np.random.seed(random_seed) # np.random.shuffle(indices)
train_indices, val_indices = indices[split:], indices[:split]
Creating PT data samplers and loaders:
train_sampler = SubsetRandomSampler(train_indices) # valid_sampler =

SubsetRandomSampler(val_indices)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size,

#sampler=train_sampler)
validation_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size,

#sampler=valid_sampler)
dataloaders = {"train": train_loader, "val": validation_loader} # mean = 0.0
meansq = 0.0 # count = 0

def mean_std_for_loader(loader: DataLoader):
var[X] = E[X**2] - E[X]**2
#channels_sum, channels_sqrd_sum, num_batches = 0, 0, 0 # for data, _ in tqdm(loader):
#this_batch_size = data.size()[0] # weight = this_batch_size / 1
#channels_sum += weight*torch.mean(data, dim=[0, 2, 3])
channels_sqrd_sum += weight*torch.mean(data ** 2, dim=[0, 2, 3]) # num_batches += weight
#mean = channels_sum / num_batches
#std = (channels_sqrd_sum / num_batches - mean ** 2) ** 0.5
#mean = [np.mean(np.array(mean)[0]),np.mean(np.array(mean)[1]),np.mean(np.array(mean)[2])]
#std = [np.mean(np.array(std)[0]),np.mean(np.array(std)[1]),np.mean(np.array(std)[2])] #return

mean, std
mean_std_for_loader(train_data) # # len(train_data)

https://stackoverflow.com/questions/50544730/how-do-i-split-a-custom-dataset-into- training-

and-test-datasets/ 50544887#50544887
validation_split = 0.2 shuffle_dataset = True random_seed= 42
batch_size = 8

dataset_size = len(train_data) indices = list(range(dataset_size))
split = int(np.floor(validation_split * dataset_size)) if shuffle_dataset :

https://stackoverflow.com/questions/50544730/how-do-i-split-a-custom-dataset-into-%20training-and-test-datasets/
https://stackoverflow.com/questions/50544730/how-do-i-split-a-custom-dataset-into-%20training-and-test-datasets/

Automated Engagement Recognition in E-Environments

16

np.random.seed(random_seed) np.random.shuffle(indices)
train_indices, val_indices = indices[split:], indices[:split]

Creating PT data samplers and loaders:
train_sampler = SubsetRandomSampler(train_indices) valid_sampler =

SubsetRandomSampler(val_indices)

 train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size,

sampler=train_sampler)
 validation_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size,

sampler=valid_sampler)
dataloaders
= {"train": train_loader, "val": validation_loader}
from google.colab.patches import cv2_imshow # a = list(train_data)
from matplotlib import pyplot as plt # for j in range(1,10):# # c = np.array(a[x])
b = np.array(a[j][0]).reshape(16,3,im_size,im_size) # # print(b.shape)
print(b)
for i in range(16):
for j in range(16):
x = b[j,:,:,:]
#print(x.shape)
x = np.reshape(x,(128,128,3)) #x = (x)
#plt.imshow(x) ## print(x.max()) #plt.show()

from model import resnet50
model = resnet50(class_num=10).to('cuda' if torch.cuda.is_available() else 'cpu')
from clr import *
device = 'cuda' if torch.cuda.is_available() else 'cpu'

cls_criterion = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3, momentum = 0.9,weight_decay =

1e-4) optimizer = torch.optim.Adam(model.parameters(), lr=0.01, betas=(0.9, 0.999), eps=1e-08,

weight_decay=0, amsgrad=False)
optimizer = torch.optim.NAdam(model.parameters(), lr=0.002, betas=(0.9, 0.999), eps=1e-08,

weight_decay=0, momentum_decay=0.004)
num_epochs = 100
onecyc = OneCycleLR(num_samples = len(train_loader),batch_size =

len(train_loader)*num_epochs,max_lr = 0.1, minimum_momentum = 1e-3)

Commented out IPython magic to ensure Python compatibility. from sklearn.metrics import

accuracy_score os.makedirs('/content/weights_crime',exist_ok = True)
seed = 0 np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed)
from torch.autograd import Variable iteration = 0
acc_all = list() loss_all = list()
min_valid_loss = np.inf val_acc = []
v_acc = [] v_loss = []

scheduler = StepLR(optimizer, step_size=10, gamma=0.1, verbose= True) for epoch in

range(num_epochs):

print('')
print(f"--- Epoch {epoch} ---") phase1 = dataloaders.keys() for phase in phase1:
print('')

Automated Engagement Recognition in E-Environments

17

print(f"--- Phase {phase} ---")
epoch_metrics = {"loss": [], "acc": [],"val_loss": [], "val_acc": []} if phase == "train":

for batch_i, (X, y) in enumerate(dataloaders[phase]): #iteration = iteration+1
image_sequences = Variable(X.to(device), requires_grad=True)
labels = Variable(y.to(device), requires_grad=False) optimizer.zero_grad()
#model.lstm.reset_hidden_state()
predictions = model(image_sequences) loss = cls_criterion(predictions, labels)
acc = 100 * (predictions.detach().argmax(1) == labels).cpu().numpy().mean()
_, preds = torch.max(predictions, 1) labels = labels.to("cpu")
preds = preds.to("cpu")
acc = 100 * accuracy_score(labels, preds)

print((predictions.detach().argmax(1) == labels)) loss.backward()
optimizer.step() epoch_metrics["loss"].append(loss.item()) epoch_metrics["acc"].append(acc)
if(phase=='train'):
lr,mom =
update_lr(optimizer, lr)
update_mom(optimizer, mom)
batches_done = epoch * len(dataloaders[phase]) + batch_i batches_left = num_epochs *

len(dataloaders[phase]) - batches_done sys.stdout.write(
 "\r[Epoch %d/%d] [Batch %d/%d] [Loss: %f (%f), Acc: %.2f%% (%.2f%%)]" #% (
epoch, num_epochs, batch_i,
len(dataloaders[phase]), loss.item(), np.mean(epoch_metrics["loss"]), acc,

np.mean(epoch_metrics["acc"]),
)
)

Empty cache
if torch.cuda.is_available(): #torch.cuda.empty_cache() print("")
print('{} , acc: {}'.format(phase,np.mean(epoch_metrics["acc"])))
else:
with torch.no_grad():
valid_loss = 0.0
Optional when not using Model Specific layer for data, labels in validation_loader:
print(data.shape) # print(vlabels)
if torch.cuda.is_available():
data, labels = data.cuda(), labels.cuda() model.eval()
target = model(data)
loss = cls_criterion(target,labels) # print(loss)
valid_loss = loss.item() # print(valid_loss)
val_acc = 100 * (target.detach().argmax(1) == labels).cpu().numpy().mean()
_, preds = torch.max(target, 1)
labels = labels.to("cpu") preds = preds.to("cpu")
val_acc = 100 * accuracy_score(labels, preds) # print((target.detach().argmax()))

epoch_metrics["val_loss"].append(valid_loss) epoch_metrics["val_acc"].append(val_acc) print('')
print('val_acc: {}'.format(np.mean(epoch_metrics["val_acc"]))) print('val_loss :

{}'.format(np.mean(epoch_metrics["val_loss"]))) if min_valid_loss >

np.mean(epoch_metrics["val_loss"]):
print(f'Validation Loss Decreased({min_valid_loss:.6f}---

>{np.mean(epoch_metrics["val_loss"]):.6f}) \t Saving The Model')
min_valid_loss = np.mean(epoch_metrics["val_loss"])

Automated Engagement Recognition in E-Environments

18

torch.save(model.state_dict(),'/content/weights_crime/c3d_{}_{}.h5'.format(epoch,str(np.mean(e

poch_metrics ["val_loss"]))[:4]))
if phase=='train':
acc_all.append(np.mean(epoch_metrics["acc"]))

loss_all.append(np.mean(epoch_metrics["loss"])) scheduler.step()
optimser.step() if phase == "val":
v_acc.append(np.mean(epoch_metrics["val_acc"]))

v_loss.append(np.mean(epoch_metrics["val_loss"]))

"""##Inference"""

data_path = '/content/drive/MyDrive/IFrames/crime16' classes = os.listdir(data_path)
decoder = {}
for i in range(len(classes)):
decoder[classes[i]] = i encoder = {}
for i in range(len(classes)):
encoder[i] = classes[i]
id = list() test = []
path = '/content/drive/MyDrive/IFrames/crime16' # print(os.listdir(path))
for i in (os.listdir(path)):
p1 = os.path.join(path,i) # print(p1)
for j in (os.listdir(p1))[:1]:
p2 = os.path.join(p1,j) id.append((i,p2)) test.append(i)
id[:][:]

from model import resnet50
model = resnet50(class_num=8).to('cuda' if torch.cuda.is_available() else 'cpu')

from clr import *
device = 'cuda' if torch.cuda.is_available() else 'cpu'

cls_criterion = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3, momentum = 0.9,weight_decay = 1e-

4) num_epochs = 20
onecyc = OneCycleLR(num_samples = len(train_loader),batch_size =

len(train_loader)*num_epochs,max_lr = 0.1, minimum_momentum = 1e-3)
Anomaly Recognition from Surveillance Videos

import cv2
import numpy as np import os
from google.colab.patches import cv2_imshow # os.makedirs("normal/test/")

os.makedirs('normal/',exist_ok = True)

seq = 16
frame_num = 0

path = '/content/drive/MyDrive/Pro_data/Anomaly_Dataset/Anomaly_Videos/Anomaly-Videos-

Part-1/Abuse/ Abuse001_x264.mp4'
des = '/content/normal/'
cap = cv2.VideoCapture(path) # Get the frames per second
fps = cap.get(cv2.CAP_PROP_FPS)

Get the total numer of frames in the video.
frame_count = cap.get(cv2.CAP_PROP_FRAME_COUNT) skip = 15

Automated Engagement Recognition in E-Environments

19

print(frame_count)

while frame_num + (seq * skip) <= frame_count: count = 0
frame_number = frame_num cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number) #

optional success, image = cap.read()
img1 = cv2.resize(image, (128,128)) while count < seq-1:
try:
frame_number += skip
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number) # optional success, image = cap.read()
image = cv2.resize(image, (128,128)) except:
print(path)
print(frame_num) # print(frame_count)
img1 = np.append(img1,image,axis = 1) count += 1
frame_num += frame_number # k += 1

cv2.imwrite(des + str(frame_number) +".jpg",img1) cv2.imwrite("image.jpg",img1)
frame_num = frame_number cv2_imshow(img1)
img = img1

from IPython.display import HTML from base64 import b64encode

video_path = path
mp4 = open(video_path, "rb").read()data_url
= "data:video/mp4;base64," + b64encode(mp4).decode() HTML(f"""
<video width=400 controls>
<source src="{data_url}" type="video/mp4">
</video> """)

img = cv2.imread("/content/image.jpg") seq_img = list()
for i in range(16):
img1 = img[:,128*i:128*(i+1),:].astype("uint8")
img1 = torchvision.transforms.functional.to_tensor(img1) img1 =

transforms.Normalize(mean,std)(img1)
img1 = transforms.Resize((im_size,im_size))(img1)
img1 = img1.to('cuda' if torch.cuda.is_available() else 'cpu') seq_img.append(img1)
seq_image = torch.stack(seq_img)
seq_image = seq_image.reshape(3,16,im_size,im_size) seq_image = seq_image.reshape([1,3, 16,

128, 128])
print(seq_image.shape)
seq_image = seq_image.cuda()
from model import resnet50
model = resnet50(class_num=8).to('cuda' if torch.cuda.is_available() else 'cpu')

model.load_state_dict(torch.load('/content/drive/Shareddrives/One/c3d_11_0.01.h5',map_locatio

n=torch.device(device))) model.eval()
model(seq_image)
pred = (model(seq_image)).argmax() # tar.append(encoder[pred.item()])

print(encoder[pred.item()])

tar = []
for i in range(len(id)):
path = id[i][1] print(path)
if path.endswith(".jpg"):

Automated Engagement Recognition in E-Environments

20

print("ori",id[i][0]) img = cv2.imread(path) seq_img = list()
for i in range(16):
img1 = img[:,128*i:128*(i+1),:].astype("uint8")
img1 = torchvision.transforms.functional.to_tensor(img1) img1 =

transforms.Normalize(mean,std)(img1)
img1 = transforms.Resize((im_size,im_size))(img1)
img1 = img1.to('cuda' if torch.cuda.is_available() else 'cpu') seq_img.append(img1)
seq_image = torch.stack(seq_img)

seq_image = seq_image.reshape(3,16,im_size,im_size) seq_image = seq_image.reshape([1,3, 16,

128, 128])
print(seq_image.shape)
seq_image = seq_image.cuda()
from model import resnet50
model = resnet50(class_num=8).to('cuda' if torch.cuda.is_available() else 'cpu')

model.load_state_dict(torch.load('/content/drive/Shareddrives/One/c3d_11_0.01.h5',map_locatio

n=torch.device(device))) model.eval()
model(seq_image)
pred = (model(seq_image)).argmax() tar.append(encoder[pred.item()])

print(encoder[pred.item()])

Automated Engagement Recognition in E-Environments

5. SCREENSHOTS

Automated Engagement Recognition in E-Environments

21

5. SCREENSHOTS

5.1 EXPLORING THE DATASET

Screenshot 5.1: Engagement Analysis

Screenshot 5.2: Engagement level increasing from left to right

Screenshot 5.3: Variety in Dataset

Automated Engagement Recognition in E-Environments

22

 6. TESTING

Automated Engagement Recognition in E-Environments

23

6. TESTING

6.1 INTRODUCTION TO TESTING

The purpose of testing is to discover errors. Testing is the process of trying to

discovery conceivable fault or weakness in a work product. It provides a way to

check the functionality of components, sub-assemblies, assemblies and/or a finished

product. It is the process of exercising software with the intent of ensuring that the

Software system meets its requirements and user expectations and does not fail in an

unacceptable manner. There are various types of tests. Each test type addresses a

specific testing requirement.

6.2 TYPES OF TESTING

6.2.1 UNIT TESTING

Unit testing involves the design of test cases that validate that the internal

program logic is functioning properly, and that program inputs produce valid outputs.

All decision branches and internal code flow should be validated. It is the testing of

individual software units of the application .it is done after the completion of an

individual unit before integration. This is a structural testing, that relies on knowledge

of its construction and is invasive. Unit tests perform basic tests at component level

and test a specific business process, application, and/or system configuration. Unit

tests ensure that each unique path of a business process performs accurately to the

documented specifications and contains clearly defined inputs and expected results.

6.2.2 INTEGRATION TESTING

Integration tests are designed to test integrated software components to

determine if they run as one program. Testing is event driven and is more concerned

with the basic outcome of screens or fields. Integration tests demonstrate that

although the components were individually satisfaction, as shown by successfully

unit testing, the combination of components is correct.

Automated Engagement Recognition in E-Environments

24

6.2.3 FUNCTIONAL TESTING

Functional tests provide systematic demonstrations that functions tested are

available as specified by the business and technical requirements, system

documentation, and user manuals. Functional testing is centered on the following

items:

Systems/Procedures: interfacing systems or procedures must be invoked.

Organization and preparation of functional tests is focused on requirements, key

functions, or special test cases. In addition, systematic coverage pertaining to identify

Business process flows, data fields, predefined processes.

6.3 TEST CASES

6.3.1 UPLOADING IMAGES

Test case

ID

Test

case
name

Purp

ose

Test Case Output

1 User

uploa

ds

video

s

Use

it for

ident

ifica

tion

The user uploads the
positive engagement video
for analysis

Uploaded

successfull

y and
positive

analysis is

generated

2 User

uploa

ds

2nd

video

Use

it for

ident

ifica

tion

The user uploads the

negative engagement

video for analysis

Uploaded

successfull
y and

negative

analysis is
generated

Valid Input : identified classes of valid input must be accepted.

Invalid Input : identified classes of invalid input must be rejected.

Functions : identified functions must be exercised.

Output : identified classes of application outputs must be exercised.

Automated Engagement Recognition in E-Environments

25

6.3.2 CLASSIFICATION

Test case
ID

Test case
name

Purpose Input Output

1 Classifica

tion test 1

To check if

the

classifier

performs its

task

Positive
engagement
video

Positive
analysis is
generated.

2 Classifica

tion test 2

To check if

the

classifier

performs its

task

Negative

engagement

video

Negative
analysis is
generated.

Automated Engagement Recognition in E-Environments

7. CONCLUSION

Automated Engagement Recognition in E-Environments

7. CONCLUSION & FUTURE SCOPE

7.1 PROJECT CONCLUSION

Our work can accelerate the entire process of engagement detection using

computer vision which will result in user analysis and business implementation.

Evaluation results also indicate that the proposed implementation is effective in

feature selection and prediction. This method can also be applied in other related

research fields by fine tuning this existing method.

7.2 FUTURE SCOPE

1. Accuracy can be further improved to create a more robust model.

2. An application can be created to provide a comfortable UI/UX use case.

Automated Engagement Recognition in E-Environments

8. BIBLIOGRAPHY

Automated Engagement Recognition in E-Environments

27

8. BIBLIOGRAPHY

8.1 REFERENCES

1 SlowFast networks: https://arxiv.org/abs/1812.03982

2 Action Recognition: https://uwaterloo.ca/vision-image-processing-lab/research-

demos/action-recognition-video

3 Human action recognition methods:

https://www.frontiersin.org/articles/10.3389/frobt.2015.00028/full

4 Crime in India statistics: https://ncrb.gov.in/en/crime-india

5 Crime in India statistics:

http://mospi.nic.in/sites/default/files/Statistical_year_book_india_chapters/ch37.pdf

6 Image and Video Understanding: https://medium.com/stradigiai/image-and-video-

understanding-an-introduction-to-computer-vision-5d83f8fa63f5

7 Image/Video Understanding and Analysis: https://www.microsoft.com/en-

us/research/project/image2text/

8 CNN for Deep Learning:

https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/

A Comprehensive Guide to Convolutional Neural Networks:

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-

networks-the-eli5-way-3bd2b1164a53

https://arxiv.org/abs/1812.03982
https://uwaterloo.ca/vision-image-processing-lab/research-demos/action-recognition-video
https://uwaterloo.ca/vision-image-processing-lab/research-demos/action-recognition-video
https://uwaterloo.ca/vision-image-processing-lab/research-demos/action-recognition-video
https://www.frontiersin.org/articles/10.3389/frobt.2015.00028/full
https://ncrb.gov.in/en/crime-india
http://mospi.nic.in/sites/default/files/Statistical_year_book_india_chapters/ch37.pdf
https://medium.com/stradigiai/image-and-video-understanding-an-introduction-to-computer-vision-5d83f8fa63f5
https://medium.com/stradigiai/image-and-video-understanding-an-introduction-to-computer-vision-5d83f8fa63f5
https://medium.com/stradigiai/image-and-video-understanding-an-introduction-to-computer-vision-5d83f8fa63f5
https://www.microsoft.com/en-us/research/project/image2text/
https://www.microsoft.com/en-us/research/project/image2text/
https://www.microsoft.com/en-us/research/project/image2text/
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

	(Submitted in partial fulfillment of the requirements for the award of Degree) BACHELOR OF TECHNOLOGY
	J. NARASIMHARAO
	(Associate Professor)

	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	Describing Data: In this following step we are going to describe the data in video file to know the number of rows and columns in the dataset.

	5. SCREENSHOTS
	5. SCREENSHOTS
	5.1 EXPLORING THE DATASET
	Screenshot 5.1: Engagement Analysis

